Stoe \& Cie (1995a). STADI4. Diffractometer Control Program for Windows. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (1995b). X-RED. Data Reduction Program for Windows. Stoe \& Cie, Darmstadt, Germany.
Wuts, P. G. M., D’Costa, R. \& Butler, W. (1984). J. Org. Chem. 49, 2582-2588.

Acta Cryst. (1996). C52, 1701-1702

4-Methylpyridinium Hydrogen Sulfide

M. T. Andras, ${ }^{a} \dagger$ A. F. Hepp, ${ }^{a *}$ P. E. Fanwick, ${ }^{b}$ R. A. Martuch, ${ }^{c}$ S. A. Duraj ${ }^{c}$ and E. M. Gordon ${ }^{d}$
${ }^{a}$ National Aeronautics and Space Administration, Lewis Research Center, Photovoltaic Branch, MS 302-1, Cleveland, Ohio 44135, USA, ${ }^{b}$ Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA, ${ }^{〔}$ Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115, USA, and ${ }^{d}$ Wilberforce University, Wilberforce, Ohio 45384, USA

(Received 13 January 1995; accepted 2 January 1996)

Abstract

4-Methylpyridinium hydrogen sulfide, $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NH}^{+} . \mathrm{HS}^{-}$, was obtained as a by-product of the reaction between GaCl_{3} and thioglycolic acid in a 4-methylpyridine solution. The compound consists of heterocyclic $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NH}^{+}$ cationic rings and HS^{-}anions. Both the $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NH}^{+}$ cation and the HS^{-}anion lie on crystallographic mirror planes with the N, S, two C and two H atoms positioned in the planes. The H atom of the HS^{-}anion was not

 located.
Comment

As part of our program to study the reactions of indium and gallium compounds in nitrogen-donor solvents, we have isolated, crystallized and structurally characterized a number of by-products derived from reactions of the solvents, including piperidinium hydrogen sulfide (Andras, Hepp, Fanwick, Duraj \& Gordon, 1994), 4methylpyridinium bromide (Andras, Hepp, Fanwick, Martuch \& Duraj, 1993) and 4-methylpyridinium hydrogen sulfide, (I), the structure of which is reported here.

(I)

[^0]4-Methylpyridinium hydrogen sulfide, also known as γ-picolinium hydrogen sulfide, retains the basic structure of the 4 -methylpyridine ring (Ohms et al., 1985), but its structure varies from that of 4-methylpyridine in several small ways. These variations include an increase in the $\mathrm{C}-\mathrm{N}-\mathrm{C}$ bond angle as the lone pair on the N atom of 4-methylpyridine is replaced with the $\mathrm{N}-\mathrm{H}$ bond of the 4 -methylpyridinium ring and a slight shortening ($0.03 \AA$) of the $\mathrm{C}(2)-\mathrm{C}(3)$ bond length between the neutral and protonated rings.

Fig. 1. ORTEP (Johnson, 1965) drawing of the title molecule (without the undetected H atom of HS^{-}) showing the atomic labeling scheme. Displacement ellipsoids are drawn at the 50% probability level, while isotropic H -atom displacement parameters are represented by spheres of arbitrary size.

Fig. 2. Packing diagram of the title compound.

Experimental

4-Methylpyridinium hydrogen sulfide was obtained as a byproduct of the reaction between GaCl_{3} and thioglycolic acid $\left(\mathrm{HSCH}_{2} \mathrm{CO}_{2} \mathrm{H}\right)$ in a 4-methylpyridine solution. The reaction was carried out under an argon atmosphere. 2.0 ml (18.7 mmol) of $\mathrm{HSCH}_{2} \mathrm{CO}_{2} \mathrm{H}$ was slowly added to a solution of 0.87 g of GaCl_{3} in 30 ml of 4-methylpyridine. After reacting for 24 h , the precipitate which formed was removed by filtration. The filtrate solution was layered with 30 ml of freshly distilled hexanes. This produced colorless crystals of 4-methylpyridinium hydrogen sulfide which were allowed to grow for 80 d . The crystals were then collected, washed with three 10 ml aliquots of hexanes and dried in vacuo.

Crystal data
$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}^{+} . \mathrm{HS}^{-}$
$M_{r}=127.21$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$

Monoclinic
Cm
$a=8.679(2) \AA$
$b=7.964$ (1) \AA
$c=4.860(2) \AA$
$\beta=101.10(2)^{\circ}$
$V=329.6(3) \AA^{3}$
$Z=2$
$D_{x}=1.28 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
empirical, ΔF (Walker
\& Stuart, 1983)
$T_{\text {min }}=0.421, T_{\text {max }}=$ 1.000

413 measured reflections
413 independent reflections

Cell parameters from 25 reflections
$\theta=18-23^{\circ}$
$\mu=0.364 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Chunk
$0.47 \times 0.32 \times 0.22 \mathrm{~mm}$ Colorless

Refinement

Refinement on F
$w=1 / \sigma^{2}(F)$
$R=0.039$
$w R=0.048$
$S=1.617$
385 reflections
59 parameters
All H -atom parameters
refined; anion H atom not located

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$B_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} B_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}$
S	0.16570	1	0.95320	3.86 (2)
N	0.4327 (5)	1	0.6516 (9)	3.61 (8)
C(2)	0.4863 (5)	0.8540 (5)	0.5731 (9)	3.93 (7)
$\mathrm{C}(3)$	0.5969 (5)	0.8508 (5)	0.4101 (8)	3.72 (6)
$\mathrm{C}(4)$	0.6555 (6)	1	0.323 (1)	3.23 (8)
C(7)	0.7805 (7)	1	0.152 (1)	4.8 (1)
H (1)	0.349 (9)	1	0.77 (2)	6 (2)
H(21)	0.459 (7)	0.756 (9)	0.68 (1)	8 (2)
H(31)	0.632 (8)	0.754 (9)	0.35 (1)	9 (2)
H(71)	0.872 (9)	I	0.30 (2)	6 (2)
H (72)	0.77 (1)	0.89 (1)	0.01 (2)	12 (2)

Table 2. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{S}-\mathrm{H}(1)$	$1.98(9)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.390(5)$
$\mathrm{N}-\mathrm{C}(2)$	$1.335(5)$	$\mathrm{C}(3)-\mathrm{H}(31)$	$0.90(8)$
$\mathrm{N}-\mathrm{H}(1)$	$1.00(9)$	$\mathrm{C}(4)-\mathrm{C}(7)$	$1.488(8)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.357(7)$	$\mathrm{C}(7)-\mathrm{H}(71)$	$1.0(1)$
$\mathrm{C}(2)-\mathrm{H}(21)$	$0.98(8)$	$\mathrm{C}(7)-\mathrm{H}(72)$	$1.1(1)$
$\mathrm{C}(2)-\mathrm{N}-\mathrm{C}\left(2^{i}\right)$	$121.1(6)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}\left(3^{\prime}\right)$	$117.5(5)$
$\mathrm{C}(2)-\mathrm{N}-\mathrm{H}(1)$	$119.4(3)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(7)$	$121.2(3)$
$\mathrm{N}-\mathrm{C}(2)-\mathrm{C}(3)$	$120.5(4)$	$\mathrm{C}(4)-\mathrm{C}(7)-\mathrm{H}(71)$	$99(6)$
$\mathrm{N}-\mathrm{C}(2)-\mathrm{H}(21)$	$114(4)$	$\mathrm{C}(4)-\mathrm{C}(7)-\mathrm{H}(72)$	$113(5)$
$\mathrm{C}(3-\mathrm{C}(2)-\mathrm{H}(21)$	$124(4)$	$\mathrm{H}(71)-\mathrm{C}(7)-\mathrm{H}(72)$	$115(6)$
$\mathrm{C}(2-\mathrm{C}(3)-\mathrm{C}(4)$	$120.2(4)$	$\mathrm{H}(72)-\mathrm{C}(7)-\mathrm{H}\left(72^{\prime}\right)$	$103(11)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(31)$	$121(5)$	$\mathrm{S}-\mathrm{H}(1)-\mathrm{N}$	$173(8)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(31)$	$118(5)$		

The crystal for analysis was sealed in a glass capillary. Intensity data were collected with a variable scan rate of 2$16^{\circ} \mathrm{min}^{-1}$ and an ω-scan width of $(0.74+0.350 \tan \theta)^{\circ}$. Intensities were corrected for Lorentz and polarization effects. Atoms were located in succeeding difference Fourier syntheses. With the exception of the H atom of the HS^{-}ion, H atoms were located and their positions and isotropic displacement parameters refined. The structure was refined by fullmatrix least-squares methods. The function minimized was $\Sigma w_{c}\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ and the weight, w, was defined by the Killean \& Lawrence (1969) method with terms of 0.020 and 0.1 . Anomalous dispersion effects were included in F_{c} (Ibers \& Hamilton, 1964) and the values of f^{\prime} and $f^{\prime \prime}$ were those of Cromer (1974). Plots of $\Sigma w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ versus $\left|F_{o}\right|$, reflection order in data collection, $\sin \theta$ and various classes of indices showed no unusual trends. All calculations were performed on a VAX computer.

Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: MolEN (Fair, 1990). Molecular graphics: ORTEP (Johnson, 1965). Software used to prepare material for publication: WordPerfect for Windon's (Version 5.2).

MTA gratefully acknowledges a postdoctoral fellowship from the National Research Council, NASA Lewis Research Center. AFH acknowledges support from the Director's Discretionary Fund at NASA Lewis Research Center. SAD acknowledges partial support from NASA grant NCC3-162. EMG acknowledges support from NASA grant NCC3-281.

Lists of structure factors, anisotropic displacement parameters and torsion angles have been deposited with the IUCr (Reference: BK1147). Copies may be obtained through The Managing Editor, International Union of Crystallography. 5 Abbey Square. Chester CHI 2HU, England.

References

Andras, M. T., Hepp, A. F., Fanwick, P. E., Duraj, S. A. \& Gordon, E. M. (1994). NASA Technical Memorandum 106527.

Andras, M. T., Hepp, A. F.. Fanwick. P. E., Martuch, R. A. \& Duraj, S. A. (1993). Acta Crrvst. C49, 548-550.

Cromer, D. T. (1974). International Tables for X-ray Crystallography. Vol. IV, Table 2.3.1. pp. 149-150. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X ray Crystallography, Vol. IV, Table 2.2A, pp. 72-98. Birmingham: Kynoch Press. (Present disuributor Kluwer Academic Publishers, Dordrecht.)
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft. The Netherlands.
Ibers, J. A. \& Hamilton, W. C. (1964). Acta Cryst. 17, 781-782.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Killean, R. C. G. \& Lawrence, J. L. (1969). Acta Crust. B25, 17501752.

Ohms, U., Guth, H., Treutmann, W., Dannöhl, H., Schweig. A. \& Heger, G. (1985). J. Chem. Phys. 83, 273-279.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

[^0]: \dagger This work was performed while the author held a National Research Council-NASA Research Associateship.

